58 research outputs found

    On the solubility of three disperse anthraquinone dyes in supercritical carbon dioxide: new experimental data and correlation

    Get PDF
    Solubility measurements of quinizarin. (1,4-dihydroxyanthraquinone), disperse red 9 (1-(methylamino) anthraquinone), and disperse blue 14 (1,4-bis(methylamino)anthraquinone) in supercritical carbon dioxide (SC CO2) were carried out in a flow type apparatus, at a temperature range from (333.2 to 393.2) K and at pressures from (12.0 to 40.0) MPa. Mole fraction solubility of the three dyes decreases in the order quinizarin (2.9 x 10(-6) to 2.9.10(-4)), red 9 (1.4 x 10(-6) to 3.2 x 10(-4)), and blue 14 (7.8 x 10(-8) to 2.2 x 10(-5)). Four semiempirical density based models were used to correlatethe solubility of the dyes in the SC CO2. From the correlation results, the total heat of reaction, heat of vaporization plus the heat of solvation of the solute, were calculated and compared with the results presented in the literature. The solubilities of the three dyes were correlated also applying the Soave-Redlich-Kwong cubic equation of state (SRK CEoS) with classical mixing rules, and the physical properties required for the modeling were estimated and reported

    Solubility of Ethene in Water and in a Medium for the Cultivation of a Bacterial Strain

    Get PDF
    The solubility of ethene in water and in the fermentation medium of Xanthobacter Py(2) was determined with a Ben-Naim-Baer type apparatus. The solubility measurements were carried out in the temperature range of (293.15 to 323.15) K and at atmospheric pressure with a precision of about +/- 0.3 %. The Ostwald coefficients, the mole fractions of the dissolved ethene, at the gas partial pressure of 101.325 kPa, and the Henry coefficients, at the water vapor pressure, were calculated using accurate thermodynamic relations. A comparison between the solubility of ethene in water and in the cultivation medium has shown that this gas is about 2.4 % more soluble in pure water. On the other hand, from the solubility temperature dependence, the Gibbs energy, enthalpy, and entropy changes for the process of transferring the solute from the gaseous phase to the liquid solutions were also determined. Moreover, the perturbed-chain statistical associating fluid theory equation of state (PC-SAFT EOS) model was used for the prediction of the solubility of ethene in water. New parameters, k(ij), are proposed for this system, and it was found that using a ky temperature-dependent PC-SAFT EOS describes more accurately the behavior solubilities of ethene in water at 101.325 kPa, improving the deviations to 1 %

    Herbicidal activity of volatiles from coriander, winter savory, cotton lavender, and thyme isolated by hydrodistillation and supercritical fluid extraction

    Get PDF
    The volatiles from Coriandrum sativum L., Satureja montana L., Santolina chamaecyparissus L., and Thymus vulgaris L. were isolated by hydrodistillation (essential oil) and supercritical fluid extraction (volatile oil). Their effect on seed germination and root and shoot growth of the surviving seedlings of four crops (Zea mays L., Triticum durum L., Pisum sativum L., and Lactuca sativa L.) and two weeds (Portulaca oleracea L. and Vicia sativa L.) was investigated and compared with those of two synthetic herbicides, Agrocide and Prowl. The volatile oils of thyme and cotton lavender seemed to be promising alternatives to the synthetic herbicides because they were the least injurious to the crop species. The essential oil of winter savory, on the other hand, affected both crop and weeds and can be appropriate for uncultivated fields

    Supercritical Extraction of Lycopene from Tomato Industrial Waste with Ethane

    Get PDF
    Supercritical fluid extraction of all-E-lycopene from tomato industrial wastes (mixture of skins and seeds) was carried out in a semi-continuous flow apparatus using ethane as supercritical solvent. The effect of pressure, temperature, feed particle size, solvent superficial velocity and matrix initial composition was evaluated. Moreover, the yield of the extraction was compared with that obtained with other supercritical solvents (supercritical CO2 and a near critical mixture of ethane and propane). The recovery of all-E-lycopene increased with pressure, decreased with the increase of the particle size in the initial stages of the extraction and was not practically affected by the solvent superficial velocity. The effect of the temperature was more complex. When the temperature increased from 40 to 60 °C the recovery of all-E-lycopene increased from 80 to 90%. However, for a further increase to 80 °C, the recovery remained almost the same, indicating that some E-Z isomerization could have occurred, as well as some degradation of lycopene. The recovery of all-E-lycopene was almost the same for feed samples with different all-E-lycopene content. Furthermore, when a batch with a higher all-E-lycopene content was used, supercritical ethane and a near critical mixture of ethane and propane showed to be better solvents than supercritical CO2 leading to a faster extraction with a higher recovery of the carotenoid

    Mathematical modelling of supercritical CO2 extraction of volatile oils from aromatic plants

    Get PDF
    The modelling of the experimental data of the extraction of the volatile oil from six aromatic plants (coriander, fennel, savoury, winter savoury, cotton lavender and thyme) was performed using five mathematical models, based on differential mass balances. In all cases the extraction was internal diffusion controlled and the internal mass transfer coefficienty (k(s)) have been found to change with pressure, temperature and particle size. For fennel, savoury and cotton lavender, the external mass transfer and the equilibrium phase also influenced the second extraction period, since k(s) changed with the tested flow rates. In general, the axial dispersion coefficient could be neglected for the conditions studied, since Peclet numbers were high. On the other hand, the solute-matrix interaction had to be considered in order to ensure a satisfactory description of the experimental data

    Composition and antioxidant activity of thymus vulgaris volatiles: comparison between supercritical fluid extraction and hydrodistillation

    Get PDF
    Supercritical fluid extraction (SEE) of the volatile oil from Thymus vulgaris L. aerial flowering parts was performed under different conditions of pressure, temperature, mean particle size and CO2 flow rate and the correspondent yield and composition were compared with those of the essential oil isolated by hydrodistillation (HD). Both the oils were analyzed by GC and GC-MS and 52 components were identified. The main volatile components obtained were p-cymene (10.0-42.6% for SFE and 28.9-34.8% for HD), gamma-terpinene (0.8-6.9% for SFE and 5.1-7.0% for HD), linalool (2.3-5.3% for SFE and 2.8-3.1% for HD), thymol (19.5-40.8% for SFE and 35.4-41.6% for HD), and carvacrol (1.4-3.1% for SFE and 2.6-3.1% for HD). The main difference was found to be the relative percentage of thymoquinone (not found in the essential oil) and carvacryl methyl ether (1.0-1.2% for HD versus t-0.4 for SFE) which can explain the higher antioxidant activity, assessed by Rancimat test, of the SFE volatiles when compared with HD. Thymoquinone is considered a strong antioxidant compound

    Emergent Biomarkers of Residual Cardiovascular Risk in Patients with Low HDL-c and/or High Triglycerides and Average LDL-c Concentrations: Focus on HDL Subpopulations, Oxidized LDL, Adiponectin, and Uric Acid

    Get PDF
    This study intended to determine the impact of HDL-c and/or TGs levels on patients with average LDL-c concentration, focusing on lipidic, oxidative, inflammatory, and angiogenic profiles. Patients with cardiovascular risk factors (n = 169) were divided into 4 subgroups, combining normal and low HDL-c with normal and high TGs patients. The following data was analyzed: BP, BMI, waist circumference and serum glucose, Total-c, TGs, LDL-c, oxidized-LDL, total HDL-c and HDL subpopulations, paraoxonase-1 (PON1) activity, hsCRP, uric acid, TNF- α , adiponectin, VEGF, and iCAM1. The two populations with increased TGs levels, regardless of the normal or low HDL-c, presented obesity and higher waist circumference, Total-c, LDL-c, Ox-LDL, and uric acid. Adiponectin concentration was significantly lower and VEGF was higher in the population with cumulative low values of HDL-c and high values of TGs, while HDL quality was reduced in the populations with impaired values of HDL-c and/or TGs, viewed by reduced large and increased small HDL subfractions. In conclusion, in a population with cardiovascular risk factors, low HDL-c and/or high TGs concentrations seem to be associated with a poor cardiometabolic profile, despite average LDL-c levels. This condition, often called residual risk, is better evidenced by using both traditional and nontraditional CV biomarkers, including large and small HDL subfractions, Ox-LDL, adiponectin, VEGF, and uric acid.info:eu-repo/semantics/publishedVersio

    A biorefinery from Nannochloropsis sp. microalga – Energy and CO2 emission and economic analyses

    Get PDF
    Are microalgae a potential energy source for biofuel production? This paper presents the laboratory results from a Nannochloropsis sp. microalga biorefinery for the production of oil, high-value pigments, and biohydrogen (bioH2). The energy consumption and CO2 emissions involved in the whole process (microalgae cultivation, harvest, dewater, mill, extraction and leftover biomass fermentation) were evaluated. An economic evaluation was also performed. Oil was obtained by soxhlet (SE) and supercritical fluid extraction (SFE). The bioH2 was produced by fermentation of the leftover biomass. The oil production pathway by SE shows the lowest value of energy consumption, 177-245 MJ/MJprod, and CO2 emissions, 13–15 kgCO2/MJprod. Despite consuming and emitting c.a. 20% more than the SE pathway, the oil obtained by SFE, proved to be more economically viable, with a cost of 365€/kgoil produced and simultaneously extracting high-value pigments. The bioH2 as co-product may be advantageous in terms of product yield or profit

    Exploring Scenedesmus obliquus and nannochloropsis sp. potential as a sustianable raw material for biofuels amd high added value compounds

    Get PDF
    In this work, the authors propose a microalga-based integrated system, where optimization of several energy vectors (biodiesel, bioethanol and bioH2) is highlighted under the concept of biorefinery (Project PTDC/AAC-AMB/100354/2008). This involves the integration of different processes such as oil and sugar extraction from microalgae for biodiesel and bioethanol production respectively, and bioH2 production from the whole and/or biomass leftovers. The extraction of high value added compounds, such as carotenoids, contributes to the economic viability of the overall process
    corecore